6,7,9,10,17,18,20,21-Octahydro-53,53,59,59-tetramethyl-43,66-(methanoxy[$[1,4]$ benzenomethano $[1,4]$ benzenoxymethano)-2,13-(iminomethano[1,4]benzeno $[1,4]$ benzenomethanimino $[1,3]$ benzenomethanoxy $[1,4]$ benzenomethano $[1,4]$ benzenoxymethano [1,3]benzeneiminomethano 1,4$]$ benzeno [1,4$]$ benzenoxymethanimino) dibenzo $[b, k\lceil 1,4,7,10,13,16]$ hexaoxacyclooctadecin (Cylindrical Macrotricyclic Receptor 1). A solution of diamide 11 ($567 \mathrm{mg}, 0.32 \mathrm{mmol}$) in THF (40 mL) was added to a suspension of $\mathrm{LiAlH}_{4}(606 \mathrm{mg}, 16 \mathrm{mmol})$ in THF (30 mL) under an argon atmosphere. The reaction mixture was heated under reflux for 12 h and then cooled to $0^{\circ} \mathrm{C}$, and a saturated MgSO_{4} solution (200 mL) was added drop by drop to the solution. The THF layer was separated by decantation, and the residue was washed with ether ($4 \times 100 \mathrm{~mL}$). After removal of the solvents, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL). The solution was washed with water, dried over MgSO_{4}, and concentrated. The crude product was purified by alumina column chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give pure 1: $202 \mathrm{mg}, 44 \% ; \mathrm{mp}$ $263-264^{\circ} \mathrm{C} ; 1 \mathrm{R}(\mathrm{KBr}) 3450,1510 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, 8 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.37(\mathrm{~d}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.36(\mathrm{~d}, 4 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 7.01(\mathrm{~d}, 8 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.73(\mathrm{~d}, 8 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.68$ $(\mathrm{d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 4 \mathrm{H}), 6.24(\mathrm{~d}, 2 \mathrm{H}, J=2.4$ $\mathrm{Hz}), 6.13(\mathrm{dd}, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}, 8.2 \mathrm{~Hz}), 4.95(\mathrm{~s}, 8 \mathrm{H}), 4.34(\mathrm{~s}, 8 \mathrm{H})$, 4.08-4.02 (m, 8 H), 3.96-3.88 (m, 8 H), $1.56(\mathrm{~s}, 12 \mathrm{H})$; HRMS (FAB) m / e for $\mathrm{C}_{94} \mathrm{H}_{92} \mathrm{~N}_{4} \mathrm{O}_{10}$ calcd 1436.6813 , found 1436.6980. Anal. Calcd for $\mathrm{C}_{94} \mathrm{H}_{92} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~N}^{4} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.78 ; \mathrm{H}, 6.68 ; \mathrm{N}, 3.71$. Found: C, 75.02; H, 6.55; N, 3.48 .

Typical Procedure for the Measurement of $\boldsymbol{K}_{\mathrm{s}}{ }^{\prime}$. Freshly purified (alumina TLC; developing solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 2% methanol) macrotricyclic receptor $1(84.5 \mathrm{mg})$ was dissolved in a $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}$ ($4 / \mathrm{l}, \mathrm{v} / \mathrm{v}$) mixed solvent and diluted to $2.00 \mathrm{~mL}(29.4 \mathrm{mM}$ solution). (3-Phenylpropyl)ammonium picrate ($2 \mathrm{a} ; 39.4 \mathrm{mg}$) was also dissolved in a $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}(4 / 1, \mathrm{v} / \mathrm{v})$ mixed solvent and diluted to $1.00 \mathrm{~mL}(108.1$ mM solution). A $25.0-\mu \mathrm{L}$ portion of the standard solution of the substrate was added to each of ten NMR sample tubes and then one each
of $0.00-, 30.0-, 50.0-, 70.0-, 90.0-, 110.0-, 130.0-, 150.0-, 170.0-$, and $190.0-\mu \mathrm{L}$ portions of the standard solution of the receptor were added, one to each tube. Every mixture was diluted to $600 \mu \mathrm{~L}$ by the addition of a $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}(4 / 1, v / v)$ mixed solvent, and the ${ }^{1} \mathrm{H}$ NMR was measured on a JEOL GX-400 instrument. The difference between the chemical shifts in the presence and in the absence of the receptor was plotted for both the ammonium α-methylene and the benzyl protons of 2a. This curve was fitted to eq 1 with the SALS program ${ }^{12}$ on HITAC M-680/M-682H computers.

Acknowledgment. We thank Dr. Hiroshi Nakazawa and Masayuki Nagase of Sumitomo Chemical Co., Ltd., for the measurement of high-resolution mass spectra. This work was supported by the Grant-in-Aid for Scientific Research (No. 62216006, 63107001) from the Ministry of Education, Science and Culture, Japan.

Registry No. 1, 106509-04-0; 1/2a 1:1 complex, 124400-87-9; 1/2b 1:1 complex, 124400-89-1; 1/2c $1: 1$ complex, 106527-63-3; 1/2d $1: 1$ complex, 124400-91-5; 1/2e 1:1 complex, 124400-93-7; 1/2f 1:1 complex, 124400-95-9; 1/2g 1:1 complex, 124400-97-1; 2a, 124400-86-8: 2b. 124400-88-0; 2c, 106527-62-2; 2d, 124400-90-4; 2e, 124400-92-6; 2f, $124400-94-8 ; 2 \mathrm{~g}, \quad 124400-96-0 ; 3,31406-52-7 ; 4,97350-55-5 ; 5$, 106508-97-8; 6, 106508-99-0; 7, 106509-03-9; 8, 106508-98-9; 9, 106509-00-6; 9 diacid, 106509-01-7; 10, 106509-02-8; 11, 106527-61-1; $12(m=3), 1070-62-8 ; 12(m=4), 626-86-8 ; 12(m=5), 33018-91-6 ;$ $12(m=6), 14113-01-0 ; 12(m=7), 1593-55-1 ; 13(m=3), 1501-05-9$; $13(m=4), 4144-62-1 ; 13(m=5), 7472-43-7: 13(m=6), 24314-23-6 ;$ $13(m=7), 53702-23-1 ; 14(m=3)$, 36603-28-8; $14(m=4)$, 31274-14-3; $14(m=5), 107416-06-8 ; 14(m=6), 124400-98-2 ; 14(m=7)$, 124400-99-3; 15a, 582-22-9; 15b, 13214-66-9; 15c, 17734-21-3; 15d, 17734-20-2; 15e, 17734-22-4; 15f, 17734-23-5; 15g, 117534-09-5; picric acid, 88-89-1.

Syntheses and Reactions of Silyl Carbamates. 2. A New Mode of Cyclic Carbamate Formation from tert-Butyldimethylsilyl Carbamate

Masahiro Sakaitani and Yasufumi Ohfune*
Contribution from the Suntory Institute for Bioorganic Research, Shimamoto-cho, Mishima-gun. Osaka 618, Japan. Received June 2, 1989

Abstract

Stereoselective construction of 1,2 and 1,3 a mino hydroxyl systems was achieved by the intramolecular trapping of the N-tert-butyldimethylsilyloxycarbonyl species (silyl carbamate) activated by fluoride ion. The reaction of the silyl carbamate with 1,2 -syn mesylate 3 gave the 1,2-anti cyclic carbamate 7 , exclusively, with complete inversion of the original stereochemistry of the leaving group. On the other hand, AgF - or $\mathrm{AgF} / \mathrm{Pd}(11)$-assisted cyclic carbamate formation from the (chloromethyl)homoallylamines $\mathbf{1 3 b} \mathbf{- 1 7 b}$ and (chloromethyl)allylamines $\mathbf{2 4 b} \mathbf{- 2 7 b}$ provided desired cyclic carbamates 19a-23a, and 7, 8, and 29a-31a, respectively, in an $\mathrm{S}_{\mathrm{c} \mathrm{N}^{\prime}}$ manner. During the formation of 19a-23a, moderate 1,3 -syn stereoselectivity was observed. High 1,2 -syn stereoselectivity was accomplished by using $\mathrm{AgF} / \mathrm{Pd}$ (II) system in the five-membered cyclic carbamate formation. These results were applied to the syntheses of statine $\mathbf{3 2}$ and its related amino acid 33 , efficiently.

Recently, 1,2 and 1,3 amino hydroxyl systems have received much attention from synthetic chemists due to their presence in a variety of natural products. Since unusual amino acids possessing the above mentioned moieties are widely distributed in biologically important peptides, development of efficient synthetic methods and application of these methods to the syntheses of such amino acids are currently of importance. ${ }^{1.2}$ Recently, we reported the synthesis of the N-tert-butyldimethylsilyloxycarbonyl group (silyl

[^0]carbamate) ${ }^{3}$ from the most common urethane-type amino-protecting groups such as N-tert-butoxycarbonyl (N - t-Boc) and N-benzyloxycarbonyl ($N-Z$). ${ }^{4}$ Owing to its high reactivity the silyl carbamate can be viewed as an N-carboxylate ion equivalent, which can be converted into several urethane-type groups by intermolecular reaction with an electrophile in the presence of fluoride ion. ${ }^{3}$ Thus, it was considered that intramolecular trapping of this reactive species would provide a stereoselective method for
(3) (a) Sakaitani, M.: Ohfune. Y. Tetrahedron Lett. 1985. 26, 5543. (b) Sakaitani, M.; Kurokawa, N.: Ohfune, Y. Tetrahedron Lett. 1986, 27, 3753. (c) For details of the syntheses of tert-butyldimethylsilyl carbamate, see: Sakaitani, M.: Ohfune, Y. J. Org. Chem., in press.
(4) (a) Bodanszky, M.; Bodanszky. A. The Practice of Peptide Synthesis: Springer: Berlin, 1984; pp 7, 151. (b) Greene, T. W. Protective Groups in Organic Synthesis; Wiley: New York, 1982; pp 232. 239.
the synthesis of the above mentioned amino hydroxyl systems. ${ }^{5}$ As shown in eq 1 , the activated species generated by fluoride ion may displace a leaving group on the same substrate to give the cyclic carbamate with inversion (internal $\mathrm{S}_{\mathrm{N}} 2$). On the other hand, trapping of this species with allyl halide at an sp^{2} carbon $\left(\mathrm{S}_{\mathrm{cN}}\right)^{6}$ is also of interest since relative asymmetry from an amino chiral center could be induced (eq 2). ${ }^{7}$ We detail here new methods for the cyclic carbamate formation and its application to the synthesis of statine and its related amino acid. ${ }^{8.9}$

$X=$ leaving group $(n=0,1)$

Results and Discussion

Internal $\mathrm{S}_{\mathrm{N}} 2$ Cyclic Carbamate Formation. Although numerous methods have recently been reported for the synthesis of the 1,2-syn (threo) amino hydroxyl system, ${ }^{9,10}$ only a limited number of methods are available for the 1,2 -anti (erythro) relationship. ${ }^{11}$ The use of the Mitsunobu method for the inversion of the hydroxyl group stereochemistry is effective for the synthesis of the 1,2 -anti amino hydroxyl system from the 1,2 -syn derivative. ${ }^{12}$ However, this system has some limitations due to the steric and/or stereoelectronic reasons of the amino substituent (vide infra). The silyl carbamate activated by fluoride ion has enough nucleophilicity to react with an alkyl or an allyl halide. ${ }^{3}$ Trapping of this reactive species in an intramolecular manner may provide cyclic carbamate
(5) For the intramolecular electrophilic 2 -oxazolidone formation from N -substituted allyl- or homoallylamines, see: (a) Parker, K. A.; O'Fee, R. J. Am. Chem. Soc. 1983, 105, 654. (b) Wang, Y. F.; lzawa, T.; Kobayashi, S.; Ohno, M. J. Am. Chem. Soc. 1982, 104, 6465. (c) Overman, L. E.; McCready, R. J. Tetrahedron Lett. 1982, 23, 4887. (d) Takano, S.; Hatakeyama, S. Heterocycles 1982, 19, 1243. (e) Georges, M.; Mackay, D.; Fraser-Reid, B. J. Am. Chem. Soc. 1982, 104, 1101. (f) Pauls, H. W.; Fraser-Reid, B. J. Am. Chem. Soc. 1980, 102, 3956.
(6) Stork, G.; Schoofs, A. R. J. Am. Chem. Soc. 1979, 101, 5081.
(7) Parts of this work were published a preliminary report: Sakaitani, M.; Ohfune. Y. Tetrahedron Lett. 1987, 28, 3987.
(8) Statine: (a) Umezawa, H.; Aoyagi, T.; Morishima, H.; Matsuzaki, M.; Hamada, H.; Takeuchi, T. J. Antibiot. 1970, 23, 2569. For a review, see: (b) Rich, D. H. In Proteinase Inhibitors; Barrett, A. J., Salvesen, G., Eds.; Elsevier: New York, 1986; p 179. (3S,4S)-4-Amino-3-hydroxy-5-phenylpentanoic acid (AHPPA): (c) Omura, S.; Inamura, N.; Kawakita, K.; Mori, Y.; Yamazaki, Y.; Masuma, R.; Takahashi, Y.; Tanaka, H.; Huang, L.-Y.; Woodruff, H. B. J. Antibiot. 1986, 39, 1079. Synthesis of AHPPA: (d) Rich, D. H.; Sun, E. T.; Ulm, E. J. Med. Chem. 1980, 23, 27. (e) Rittle, K. E.; Homnick, C. F.; Ponticello, G. S.; Evans, B. E. J. Org. Chem. 1982, 47, 3016.
(9) For recent syntheses of statine and its analogues, see: (a) Nishi, T.; Kitamura, M.; Ohkuma, T.; Noyori, R. Tetrahedron Lett. 1988, 29, 6327. (b) Devant, R. M.; Radunz, H.-E. Tetrahedron Lett. 1988, 29, 2307. (c) Raddatz, P.; Radunz, H.-E.; Schneider, G.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1988, 27, 426. (d) Maibaum, J.; Rich, D. H. J. Org. Chem. 1988, 53, 869 (e) Schuda, P. F.; Greenlee, W. J.; Chakravarty, P. K.; Eskola, P. J. J. Org. Chem. 1988, 53, 873. (f) Schostarez, H. J. J. Org. Chem. 1988, 53, 3628 (g) Kano, S.; Yuasa, Y.; Yokomatsu, T.; Shibuya, S. J. Org. Chem. 1988, 53, 3865. (h) Jouin, P.; Castro, B. J. Chem. Soc., Perkin Trans. l 1987, 1177 (i) Harris, B. D.; Bhat, K. L.; Joullie, M. M. Tetrahedron Lett. 1987, $28,2837$. (j) Lubell, W. D.; Rapoport, H. J. Am. Chem. Soc. 1987, 109, 236. (k) Kano, S.; Yokomatsu, T.; Iwasawa, H.; Shibuya, S. Chem. Lett. 1987, 1531. (1) Kano, S.; Yokomatsu, T.; I wasawa, H.; Shibuya, S. Tetrahedron Lett. 1987, 28, 6331. (m) Andrew, R. G.; Conrow, R. E.; Elliott, J. D.; Johnson, W. S.; Ramezani, S. Tetrahedron Lett. 1987, 28, 6535. (n) Sham, H. L.; Rempel, C. A.; Stein, H.; Cohen, J. J. Chem. Soc., Chem. Commun. 1987, 683. (o) Kogen, H.; Nishi, T. J. Chem. Soc., Chem. Commun. 1987, 311. (p) Hanson, G. J.; Baran, J. S.; Lindberg, T. Tetrahedron Lett. 1986, 27, 3577. (q) Woo, P. W. K. Tetrahedron Lett. 1985, 26, 2973. Other references are cited therein.
(10) For a review of α-amino aldehydes, see: Jurczak, J.; Gołębiowski, A. Chem. Rev. 1989, 89, 149. Asymmetric glycine enolate aldol approaches: (a) Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757. (b) Schöllkopf, U.; Nozulak, J.; Grauert, M. Synthesis 1985, 55. (c) Nakatsuka, T.; Miwa, T.; Mukaiyama, T. Chem. Lett. 1981, 279.
(11) (a) Evans, D. A.; Sjogren, E. B.; Weber, A. E.; Conn, R. E. Tetrahedron Lett. 1987, 28, 39. (b) Kurokawa, N.; Ohfune, Y. J. Am. Chem. Soc. 1986, 108, 6041
(12) For a review, see: Mitsunobu, O. Synthesis 1981, 1.

Scheme Ia

${ }^{a}$ Reagents and conditions: (a) 1.5 equiv of t - $\mathrm{BuMe}_{2} \mathrm{SiOTf}, 2.0$ equiv of 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, 15 min ; (b) 1.5 equiv of n - $\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
accompanied by an inversion of the original stereochemistry of the leaving group (eq 3).

Initially, the tosylate 1^{13} was chosen as the substrate. Treatment of 1 with 1.5 equiv of tert-butyldimethylsilyl trifluoromethanesulfonate (t - $\mathrm{BuMe}_{2} \mathrm{SiOTf}$) and 2 equiv of 2,6 -lutidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gave its corresponding N-silyloxycarbonylated 1, which upon treatment with 1.0 equiv of tetrabutylammonium fluoride ($n-\mathrm{Bu}_{4} \mathrm{NF}$) in tetrahydrofuran (THF) at $0^{\circ} \mathrm{C}$ furnished the cyclic carbamate 5 in good yield. This result prompted us to examine the cyclic carbamate formation from the 1,2 -syn mesylate $3 .{ }^{13.14}$ Treatment of $\mathbf{3}$ in the same manner as above gave the 1,2 -anti cyclic carbamate 7 , exclusively. This result clearly indicates that the reaction proceeded stereospecifically to give cyclic carbamate 7 in which the original stereochemistry of the hydroxyl group was completely inverted. Furthermore, the reaction of the 1,2 -anti mesylate $4^{13,14}$ gave the cyclic carbamate 8 with a 1,2 -syn stereochemistry.

The structures of these carbamates 7 and 8 were elucidated by comparison of their ${ }^{1} \mathrm{H}$ NMR chemical shifts at $4-\mathrm{H}$ and $5-\mathrm{H}$ with those of the related compounds (see, Table IV). Thus, interconversion of both 1,2-syn and -anti amino hydroxyl systems was accomplished (Scheme I). The significant synthetic potential of this method was demonstrated by the key conversion of 9 into the 1,2-anti carbamate 10, where the Mitsunobu procedure was not effective probably due to the presence of the sterically bulky N-tert-butoxycarbonyl group. ${ }^{15}$ Treatment of 9 with 1 equiv of $n-\mathrm{Bu}_{4} \mathrm{NF}$ in THF at $0^{\circ} \mathrm{C}$ for 1 h gave the desired 10 , stereospecifically, in 93% yield.

\mathbf{S}_{cN} Cyclic Carbamate Formation. Intramolecular trapping of the activated silyloxycarbonyl group with a trigonal carbon is of
(13) For details of the preparation of this compound, see the supplementary material.
(14) Ohfune, Y.; Nishio, H. Tetrahedron Lett. 1984, 25, 4133.
(15) Hori, K.; Ohfune, Y. J. Org. Chem. 1988, 53, 3886.

Table I. AgF- (Method A) and AgF/Pd(1I)-(Method B) Assisted S_{cN} Cyclic Carbamate Formation of (Chloromethyl)homoallylamines ${ }^{a}$

entry	R	method ${ }^{\text {b,c }}$	yield, ${ }^{\text {d }}$ \%	product ratio (syn/anti) ${ }^{\text {e }}$
1	$\mathrm{CO}_{2} \mathrm{Me} 13 \mathrm{~b}$	A	63	19a/19b $=3 / 2$
2	$\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph} 14 \mathrm{~b}$	A	53	20a/20b $=4 / 3$
3	$\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph} 15$ b	A	63	21a/21b $=4 / 1$
4	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathbf{1 6 b}$	A	63	22a/22b $=4 / 1$
5	$\mathrm{CH}_{2} \mathrm{Ph} 17 \mathrm{~b}$	A	65	$23 \mathrm{a} / 23 \mathrm{~b}=4 / 1$
6	$\mathrm{CO}_{2} \mathrm{Me}{ }^{13} \mathrm{~b}$	B	72	19a/19b $=1 / 1$
7	$\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph} 14 \mathrm{~b}$	B	53	20a/20b $=1 / 1$
8	$\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph} 15$ b	B	70	21a/21b $=1 / 1$
9	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathbf{1 6 b}$	B	65	$22 a / 22 b=3 / 2$
10	$\mathrm{CH}_{2} \mathrm{Ph} 17 \mathrm{~b}$	B	50	23a/23b $=3 / 2$
11		A	0	
	18b			
12	18b	B	0	

${ }^{a}$ Prepared from the corresponding N - t-Boc $13 \mathrm{a}-18 \mathrm{a}^{13}$ with t - $\mathrm{BuMe}_{2} \mathrm{SiOTf} / 2,6$-lutidine. ${ }^{b}$ Method A: 2 equiv of $\mathrm{AgF}, \mathrm{CH}_{3} \mathrm{CN}$, room temperature, $15-24 \mathrm{~h}$. ${ }^{c}$ Method B: 2 equiv of $\mathrm{AgF}, 0.1$ equiv of allylpalladium(II) chloride dimer, 0.3 equiv of $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}$, room temperature, $3-8 \mathrm{~h}$. ${ }^{d}$ lsolated yield. 'Ratio determined by ${ }^{1} \mathrm{H}$ NMR or HPLC analysis.
interest. Our initial attempt was to trap this reactive species by a Michael acceptor such as an α, β-unsaturated ester of $11 .{ }^{16,17}$ However, exclusive formation of the amine 11c was observed by the fluoride ion treatment of the silyl carbamate $11 \mathrm{~b}\left(n-\mathrm{Bu}_{4} \mathrm{NF}\right.$, $\mathrm{CsF}, \mathrm{etc}$). It is assumed that the reaction underwent initial 1,4 -addition to give carbamate 12a, which subsequently equilibrated to 12b from which decarboxylation gave 11c.

Therefore, our attention was turned to the use of an allyl halide as an acceptor of N-carboxylate ion species in an $\mathrm{S}_{\mathrm{cN}^{\prime}}$ manner (eq $2, n=1) .{ }^{6}$ In this case, AgF was our first choice since both chlorine and silicon atoms can be activated by this reagent. Thus, allyl chloride 13b, prepared from $N-t-$-Boc $13 \mathbf{a}^{13}$ with t $\mathrm{BuMe}_{2} \mathrm{SiOTf}$ and 2,6-lutidine, was treated with 2 equiv of AgF in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature for 24 h to give the desired 19 in 63% yield.

For the elucidation of general aspects of this reaction, other reagents and reaction conditions were examined at first. These results are summarized by the following points. (1) No cyclic carbamate 19 with $n-\mathrm{Bu}_{4} \mathrm{NF} / \mathrm{THF}$ without AgF was detected; (2) the use of silver trifluoromethanesulfonate (AgOTf) or silver tetrafluoroborate $\left(\mathrm{AgBF}_{4}\right)$ reduced the yields (8% with AgOTf $/ 2,6$-lutidine/THF, reflux; and 21% with $\mathrm{AgBF}_{4} / 2,6$ lutidine/THF); and (3) the use of $N-t$-Boc 13a (without prior

[^1]

Figure 1.
t - $\mathrm{BuMe}_{2} \mathrm{SiOTf}_{\mathrm{O}}$ treatment) decreased the yield (11% with $\mathrm{AgF} / \mathrm{CH}_{3} \mathrm{CN}$, reflux, 20 h). Therefore, it is concluded that the use of AgF is the best choice for the preparation of cyclic carbamate from silyl carbamates.

In addition to the above results, trapping of the activated species with π-allylpalladium complex ${ }^{18}$ generated from the allyl chloride moiety of 13 b is of interest. Thus, 0.1 equiv of π-allylpalladium(II) chloride dimer and 0.3 equiv of triphenylphosphine were added to the above reaction medium ($\mathbf{1 3 b} \rightarrow 19$). Significant rate enhancement (room temperature, 3 h) and increased yield (70%) were observed. To explain the general applicability of the AgF$(\operatorname{method} \mathrm{A})$ and $\mathrm{AgF} / \mathrm{Pd}(\mathrm{II})-(\operatorname{method} \mathrm{B})$ assisted cyclic carbamate formation and its stereochemical outcome, (chloromethyl)homoallylamines $\mathbf{1 4 b}-18 b^{13}$ were employed for these reactions (Table I).

Results of the six-membered cyclic carbamate formation of 13b-18b were characterized by the following points: (1) cyclic carbamates were produced from the (E)-allyl chlorides $\mathbf{1 3 b} \mathbf{- 1 7 b}$ in good yield; (2) cyclic carbamate 21 could not be obtained from the (Z)-allyl chloride 18b (entries 11 and 12); (3) moderate stereoselectivity for the formation of 1,3-syn cyclic carbamate was observed by the use of method A (entries $3-5$); and (4) in contrast to method A , it is surprising that the stereoselectivity was not observed by the use of method B (entries 6-10). From (1)-(3), it is suggested that the reaction using method A proceeds through

[^2]Table II. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ Chemical Shifts and Coupling Constants of 6-Vinyltetrahydro-1,3-oxazin-2-ones

Figure 2.
the cyclic transition state A or B where AgF chelates both with a silicon and with a chlorine atom: since the cyclic transition state from 18b with a Z double bond involving AgF is much higher in energy than that for the E derivatives, the rate of side reactions, such as desilylation followed by decarboxylation which gives free amine, is much faster than that of the cyclic carbamate formation. ${ }^{19,20}$ 1,3-Syn isomers may be produced in favor of the thermodynamically more stable A (Figure 1). In entries 1 and 2, decreased steric bulkiness by the ester group of $\mathbf{1 3 b}$ and $\mathbf{1 4 b}$ may be one of the reasons why the stereoselectivity was reduced.
On the other hand, it is assumed by the consideration of (4) that the use of method B led to an initial dissociation of AgF and subsequent formation of π-allylpalladium intermediates C and D, or E (Figure 2). Although there appears to be a different stability between the transition-state structures, C and D, the product ratio was 1:1. Therefore, we propose that the rate-determining step involves formation of a π-allyl-Pd complex, proceeding via an acyclic model E where the direction of palladium attack to the substrate has an almost even possibility from either side, and that subsequent cyclization occurs in a fast step via
(19) The reaction of $\mathbf{1 8 b}$ using both methods, A and B, was sluggish and the products were composed of a mixture of polar and unidentifiable compounds that might be produced by an inter- and/or intramolecular reaction of the resulting amine with allyl chloride or other reactive species. A small amount of free amine derived from 18b was isolated in these cases. On the other hand, the reaction in $\mathrm{CH}_{3} \mathrm{CN}$ under reflux gave a complex mixture and the amine could not be detected. We believe that the side reactions in all cases are mainly due to an initial cleavage of the $\mathrm{Si}-\mathrm{O}$ bond, activated by fluoride ion, followed by a decarboxylation prior to attack to the leaving group under the reaction conditions or by adventitious moisture. Such side reactions would reduce the yields.
(20) The reaction of allyl chloride (i.e., 13b) with allylpalladium chloride dimer in the absence of AgF was found to be extremely slow by monitoring with TLC. Therefore, it is suggested that both activation of the silicon atom by fluoride ion and formation of π-allylpalladium complex are important to accelerate the reaction rate in producing cyclic carbamates.

Scheme II ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, benzene, $40^{\circ} \mathrm{C}$; (b) i - $\mathrm{Bu}_{2} \mathrm{AlH}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF},-78^{\circ} \mathrm{C}$; (c) N-chlorosuccinimide (NCS), $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (d) $\mathrm{Ph}_{3} \mathrm{PCHCHO}$, benzene, $40^{\circ} \mathrm{C}$; (e) $\mathrm{LiAlH}(\mathrm{O}-t-\mathrm{Bu})_{3}$, THF, $-30^{\circ} \mathrm{C}$; (f) $\left.\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$, $\mathrm{NaH}, 18$-crown-6, THF, $-78^{\circ} \mathrm{C}$.

Figure 3.
transition-state structures similar to C and D (no equilibrium between C and D). ${ }^{21}$

The stereochemistry of the cyclic carbamates obtained above was elucidated by the ${ }^{1} \mathrm{H}$ NMR data, as shown in Table II. The large J values ($J_{\mathrm{H}_{2}-\mathrm{H}_{\mathrm{C}}}=J_{\mathrm{H}_{\mathrm{c}}-\mathrm{H}_{\mathrm{a}}}=11-12 \mathrm{~Hz}$) observed in all major isomers by method A (entries 1-4, Table I) clearly indicate that
(21) lt is assumed that the $\mathrm{AgF} / \mathrm{Pd}(11)$ reactions from the Z allyl chlorides, 18b and 20b, involve the transition state (i) in which nitrogen chelates

to palladium (internal Lewis acid to nitrogen, which accelerates decarboxylation) resulting in the formation of their corresponding amines. From the E isomers, such internal delivery of Lewis acid cannot occur. ${ }^{\text {a }}$ (a) Trost, B. M.; Verhoeven, T. R. Comprehensive Organometallic Chemistry; Sir Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.: Pergamon Press: Oxford, U.K., 1982; pp 799.

Table III. AgF- (Method A) and AgF/Pd(II)- (Method B) Assisted S_{cN}. Cyclic Carbamate Formation of (Chloromethyl)allylamines ${ }^{a}$

entry	R	method $^{\text {b.c }}$	yield, ${ }^{\text {d }}$ \%	product ratio (syn/anti) ${ }^{\text {e }}$
1	$\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph} 24 \mathrm{~b}$	A	55	$8 / 7=3 / 1$
2	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathbf{2 5 b}$	A	81	29a/29b $=5 / 1$
3	$\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph} 24 \mathrm{~b}$	B	72	8/7 = $8 / 1$
4	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathbf{2 5 b}$	B	76	29a/29b $=15 / 1$
5	$\mathrm{CH}_{2} \mathrm{Ph} 26 \mathrm{~b}$	B	70	30a/30b $=10 / 1$
6	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NHZ} \mathrm{27b}$	B	53	$31 \mathrm{a} / 31 \mathrm{~b}=40 / 1$
7	$\mathrm{NHCO}_{2} \mathrm{~S} / \mathrm{Me}_{2}-\mathrm{tBu}$	A	0	
	28b			
8	28b	B	9	$8 / 7=8 / 1$

${ }^{a}$ Prepared from the corresponding $N-t$-Boc 24a-28a. ${ }^{b}$ Method A: 2 equiv of $\mathrm{AgF}, \mathrm{CH}_{3} \mathrm{CN}$, room temperature, $15-24 \mathrm{~h}$. ${ }^{c}$ Method B: 2 equiv of $\mathrm{AgF}, 0.1$ equiv of allylpalladium(1I) chloride dimer, 0.3 equiv of $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}$, room temperature, $3-8 \mathrm{~h}$. ${ }^{d}$ Isolated yield. ${ }^{e}$ Ratio determined by ${ }^{1} \mathrm{H}$ NMR or HPLC.

Table IV. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ Chemical Shifts and Coupling Constants of 5-Vinyl-2-oxazolidinones

	R	$\mathrm{Ha}_{\mathrm{a}} \delta, \mathrm{ppm}$	$\mathrm{H}_{\mathrm{b}} \delta$, ppm	$J_{a-b}, \mathrm{~Hz}$	NOE, \%
HN-3'	$\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph} 8$	3.68	4.68	7	
H_{3}	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} 29 \mathrm{a}$	3.58	4.50	7	$6\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{c}}\right)$
	$\mathrm{CH}_{2} \mathrm{Ph} 30 \mathrm{a}$	3.77	4.64	6	
	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NHZ} \mathrm{31a}$	3.50	4.52		$0\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{b}}\right)$
1,2-syn (trans)					
	$\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph} 7$	4.02	5.08	8	
$\mathrm{H}_{\mathrm{s}}{ }_{-}^{\mathrm{HN}} \mathrm{~S}^{\mathrm{H}}$	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} 29 \mathrm{~b}$	3.94	5.01	7	$0\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{c}}\right)$
(2)	$\mathrm{CH}_{2} \mathrm{Ph} 30 \mathrm{~b}$	4.08	5.08	7	
	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NHZ} \mathrm{31b}$	3.83	5.03	6	$6.8\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{b}}\right)$
1,2-anti (cis)					

19a-23a possess the assigned structure with $1,3-$ syn (cis) substituents.

The five-membered cyclic carbamate formations of the (chloromethyl) allylamines $\mathbf{2 4 b} \mathbf{- 2 8 b}$, prepared from α-amino aldehydes ${ }^{22,23}$ as shown in Scheme II by the same methods as above, were next examined. These results are summarized in Table III. In the case of AgF -assisted reactions (method A), moderate yields and $1,2-$ syn (threo) selectivity were observed (entries 1 and 2). On the other hand, the use of AgF in the presence of Pd (II) catalyst (method B) showed a significant rate enhancement and improvement of the yields. Moreover, in contrast to the results obtained in the six-membered cyclic carbamate formation, an increase in a 1,2-syn (threo) selectivity was observed. Especially, high stereoselectivity was encountered in entries 4-6 in which a bulky substituent is placed at the carbon bearing the amino group.

Five-membered cyclic carbamate formation is thought to arise from hypothetical cyclic intermediate F or G, which resembles that of the six-membered case (Figure 3). Due to the presence of a severe 1,2 steric interaction in the transition-state structure G, the reaction may proceed via a thermodynamically more favored F, resulting in the predominant formation of the 1,2 -syn isomer. Desired cyclic carbamate was not produced from the
(22) Yasumasa, H.; Shioiri, T. Chem. Pharm. Bull. 1982, 30, 1921.
(23) No racemization during this process was confirmed by converting allyl alcohols to the corresponding N, O-bis-(+)-MTPA a mide esters. ${ }^{1}{ }^{1} \mathrm{H}$ NMR data indicated their homogeneity: ($4 S$)- N, O-bis-(+)-MTPA-4-a mino-6-methyl-2-heptenol ($\mathbf{2 5}^{\prime}$): oil; ' ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.3-7.6(\mathrm{~m}, 10 \mathrm{H}), 6.62$ $(\mathrm{d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 5.67(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{q}$, $3 \mathrm{H}, J=1 \mathrm{~Hz}), 3.42(\mathrm{q}, 3 \mathrm{H}, J=1 \mathrm{~Hz}), 1.3-1.7(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{~d}, 6 \mathrm{H}, J$ $=7 \mathrm{~Hz}$). The methoxy groups of its diastereomer appeared at $\delta 3.55(\mathrm{q}, 3$ $\mathrm{H}, J=1 \mathrm{~Hz}$) and $3.38(\mathrm{q}, 3 \mathrm{H}, J=1 \mathrm{~Hz}$. ($4 S$) $-N, O$-bis-(+)-MTPA-4-amino-5-phenyl-2-pentanol (26^{\prime}): oill; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~m}, 15 \mathrm{H})$, $6.58(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 5.65(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, 2 \mathrm{H}, J=7$ $\mathrm{Hz}), 3.50(\mathrm{q}, 3 \mathrm{H}, J=1 \mathrm{~Hz}), 3.18(\mathrm{q}, 3 \mathrm{H}, J=1 \mathrm{~Hz}), 2.87(\mathrm{~m}, 2 \mathrm{H})$. (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.

Figure 4.
(Z)-allylamine $\mathbf{2 8 b}$ with method A due probably to its high-energy transition-state structure, as mentioned in the six-membered case. ${ }^{19.20}$

On the other hand, by adding Pd(II) catalyst, a Felkin-Anh type transition-state model H resembling the thermodynamically favored ground-state conformation ${ }^{24,25}$ was proposed to elucidate the greater 1,2 -syn selectivity. In this model, it is assumed that initial $\mathrm{Pd}(\mathrm{II})$ attack to the less hindered side (rate-determining step) followed by participation of the activated silyloxycarbonyl group (stereocontrol by the allylic chiral center) results in the predominant formation of 1,2 -syn adduct (Figure 4). In addition, it is noted that the reaction of (Z)-allylamine 28b using method B produced cyclic carbamate to give 8 and $7(8 \%, 8: 1)$. This may be due to an initial isomerization of the Z double bond into E, which consequently cyclizes to give 8 and $7 .^{21}$

The structures of the cyclic carbamates in Table III were elucidated by comparison of their ${ }^{1} \mathrm{H}$ NMR chemical shifts of H_{a} and H_{b} of each compound with those of related compounds (Table IV); ${ }^{26}$ the H_{a} and H_{b} signals of the 1,2-syn carbamates
(24) Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 1977, l, 61.
(25) Johnson, F. Chem. Rev. 1968, 68, 375.
(26) The significant difference of J values ($J_{\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{b}}}$) observed between 1,2syn (trans) and 1,2-anti (cis) 2-oxazolidone systems was used for the structure determination of these systems. ${ }^{\text {a }}$ However, only slight differences of J values observed in these studies, maybe due to the allylic nature of the H_{a} position. (a) Futagawa, S.; lnui, T.; Shiba, T. Bull. Chem. Soc. Jpn. 1973, 46, 3308.

Scheme III ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) (1) 9-BBN, THF, room temperature, (2) $6 \mathrm{~N} \mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$; (b) (1) $\mathrm{Ba}(\mathrm{OH})_{2}$, EtOH , reflux; (2) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$, room temperature; (c) $\mathrm{PtO}_{2}, \mathrm{O}_{2}$, dioxane $/ \mathrm{H}_{2} \mathrm{O}=$ $1 / 3,50^{\circ} \mathrm{C}$.
appeared $0.3-0.5 \mathrm{ppm}$ upfield relative to those of the anti isomers. A NOE (6%) was observed between H_{a} and H_{c} in 29a indicating a trans relationship of the vinyl and R substituents on the 2-oxazolidone ring: the major isomers having 1,2-syn stereochemistry were further proven by converting several derivatives into the corresponding natural amino acids as described in the following section.

Stereoselective Synthesis of Statine and Its Related Amino Acid. In recent studies concerning renin inhibition, the pepstatine family of peptide-related inhibitors have been expected to be potential antihypertensive medicinal agents. ${ }^{8}$ Statine (32) and ($3 S, 4 S$)-

32 staline

33 AHPPA

4-amino-3-hydroxy-5-phenylpentanoic acid (33; AHPPA) are the key constituent amino acids of these peptides. Although much attention has focused on the syntheses of statine and AHPPA. ${ }^{8,9}$ only a limited number of methods provide the stereoselective construction of these key vicinal amino hydroxyl systems.

Since the $\mathrm{AgF} / \mathrm{Pd}(\mathrm{II})$-assisted S_{cN}, five-membered cyclic carbamate formation was proven to be an extremely effective method for the synthesis of vicinal amino hydroxyl systems with the requisite 1,2 -syn stereochemistry, this method was applied to the syntheses of statine and its related amino acid, AHPPA (33). Thus, the cyclic carbamates 29a and 30a, prepared stereoselectively in the previous section, are the intermediates that possess appropriate functionalities and carbon frameworks corresponding to these amino acids, respectively. Conversion of these intermediates to the target amino acids is as follows. Hydroboration of 29 a using 9 -borabicyclo[3.3.1]nonane ($9-\mathrm{BBN}$) and subsequent oxidation ($\mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$) gave the primary alcohol 34 a . Hydrolysis of the cyclic carbamate of 34 a with $\mathrm{Ba}(\mathrm{OH})_{2}$ followed by protection of the resulting amine with di-tert-butyl dicarbonate ($\mathrm{Boc}_{2} \mathrm{O}$) furnished N -protected diol 35a in 82% yield from 29a. The primary hydroxyl group of 35 a was selectively oxidized ${ }^{27}$ by the use of $\mathrm{PtO}_{2} / \mathrm{O}_{2}$ to give N - t-Boc-statine ($\mathbf{3 6 a} ; 60 \%, 27 \%$ overall yield from N - t-Boc-L-isoleucinal): $\mathrm{mp} 118-120^{\circ} \mathrm{C},[\alpha]^{34} \mathrm{D}-38.5^{\circ}$ (c $1.0, \mathrm{MeOH}$). $N-t$-Boc-AHPPA 36b was prepared in the same manner as above (19% overall yield from $N-t$-Boc-L-phenylalaninal): $\mathrm{mp} 151-152^{\circ} \mathrm{C},[\alpha]^{30} \mathrm{D}-37.5^{\circ}(c 1.0, \mathrm{MeOH})$. These synthetic materials showed spectroscopic as well as physical constants completely identical with those reported. ${ }^{8 d, 8 e}$

Conclusion. Intramolecular trapping of the tert-butyldimethylsilyl carbamate activated by fluoride ion was studied. In the internal $\mathrm{S}_{\mathrm{N}} 2$ reactions, complete inversion of the original hydroxyl group stereochemistry was observed. On the other hand, AgF - and $\mathrm{AgF} / \mathrm{Pd}(\mathrm{II})$-assisted S_{cN} cyclic carbamate formation was accomplished by the use of (chloromethyl)homoallylamines and (chloromethyl)allylamines. These results provide new methods for the stereoselective construction of 1,2 and 1,3 amino hydroxyl systems. Application of the present studies was demonstrated by the synthesis of several biologically important unusual amino acids.

[^3]
Experimental Section

Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on one of the following instruments: JEOL FX 100, Nicolet NT-360, or General Electric GN-500. Chemical shifts are reported as δ values in ppm relative to CHCl_{3} (7.26) in CDCl_{3}. 1R spectra were measured on an Hitachi 270-30 infrared spectrophotometer. Mass spectra were obtained on a Hitachi M-80B spectrometer for electron impact (EI) ionization and secondary ionization mass spectrometry (SIMS). Optical rotations were taken on a Perkin-Elmer 241 polarimeter. All reactions were monitored by thin-layer chromatography, carried on $2 \times 5 \mathrm{~cm}$ precoated TLC plates (silica gel $60 \mathrm{~F}-254$; layer thickness, 0.25 mm) manufactured by Merck, with UV light (254 nm), ninhydrin, or KMnO_{4} solution (0.5 g dissolved in 100 mL of water). Silica gel (Merck 60 , 70-230 mesh) was used for column chromatography. Medium-pressure liquid chromatography (MPLC) was carried out by LiChroprep Si 60 lobar column sizes A, B, and C (Merck). High-performance liquid chromatography (HPLC) was performed with Develosil ODS-5 (Nomura Chemical). All reactions were carried out under an argon atmosphere. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous materials unless otherwise stated.

4-(Methoxycarbonyl)tetrahydro-1,3-oxazin-2-one (5). To a stirred solution of 1 ($149 \mathrm{mg}, 0.38 \mathrm{mmol}$) and 2,6-lutidine ($88 \mu \mathrm{~L}, 0.76 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature was added dropwise tertbutyldimethylsilyl trifluoromethanesulfonate (t - $\mathrm{BuMe}_{2} \mathrm{SiOTf} ; 131 \mu \mathrm{~L}$. 0.57 mmol). The reaction mixture was stirred for 15 min , quenched with saturated aqueous ammonium chloride solution, and extracted with ether several times. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give N-(tert-butyl-dimethylsilyloxycarbonyl)- O-(p-tolylsulfonyl)-L-homoserine methyl ester (180 mg ; procedure I for the preparation of tert-butyldimethylsilyl carbamate). ${ }^{3}$

The resulting silyl carbamate was treated with 380 mL [1 M solution in tetrahydrofuran (THF), 0.38 mmol] of tetrabutylammonium fluoride in THF (2 mL) at $0^{\circ} \mathrm{C}$ for 1 h and quenched with saturated aqueous ammonium chloride solution. The mixture was extracted with ethyl acetate (EtOAc) several times. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and then brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give the crude product, which upon purification by column chromatography on silica gel (elution with 50% EtOAc in ether) gave $5(44 \mathrm{mg}$, 72%): colorless prisms; mp 92-93 ${ }^{\circ} \mathrm{C}$ (EtOAc); IR (neat) 3296, 2964, $1740,1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 6.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30$ $(\mathrm{t}, 2 \mathrm{H}, J=6 \mathrm{~Hz}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.0-2.5(\mathrm{~m}, 2 \mathrm{H})$; MS (E 1 method), $m / z 159(\mathrm{M})^{+}, 115,100$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}$: C, 45.28; H, 5.70; N, 8.80. Found: C, 45.34; H, 5.68; N, 8.78.

4-(2-Allyl)-2-oxazolidinone (6). $\quad N$-(tert-Butyldimethylsilyloxy-carbonyl)-2-amino-1-(p-tolylsulfonyloxy)-4-pentene was prepared from $2(2.44 \mathrm{~g}, 6.9 \mathrm{mmol})$ according to procedure I . The resulting silyl carbamate in THF (20 mL) was treated at $0^{\circ} \mathrm{C}$ with $10.5 \mathrm{~mL}(1 \mathrm{M}$ solution in THF, 10.5 mmol) of tetrabutylammonium fluoride. The reaction mixture was stirred for 1 h and extracted with EtOAc several times. The combined organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give an oily residue, which upon purification by column chromatography on silica gel (elution with 10% EtOAc in ether) gave $6(811 \mathrm{mg}, 93 \%)$: oil; IR (neat) $3292,2984,2920,1750,1646 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 6.71$ (br s, 1 H), 5.72 (ddt, $1 \mathrm{H}, J=18$, $10,7 \mathrm{~Hz}), 5.17(\mathrm{dd}, 1 \mathrm{H}, J=10,2 \mathrm{~Hz}), 5.14(\mathrm{dd}, 1 \mathrm{H}, J=18,2 \mathrm{~Hz})$, $4.47(\mathrm{dd}, 1 \mathrm{H}, J=8,8 \mathrm{~Hz}), 4.05(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 2.34$ (dd, $2 \mathrm{H}, J=7,7 \mathrm{~Hz}$); MS (EI method), $m / z 128(\mathrm{M})^{+}, 87$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 56.68 ; \mathrm{H}, 7.13 ; \mathrm{N}, 11.02$. Found: $\mathrm{C}, 56.73 ; \mathrm{H}$, 7.22; N, 10.99 .
($4 R^{*}, 5 S^{*}$)-4-(Benzyloxymethyl)-5-vinyl-2-oxazolidinone (7). ($2 R^{*}, 3 R^{*}$)- N-(tert-Butyldimethylsilyloxycarbonyl)-2-amino-1-(benzyl-oxy)-3-(methylsulfonyloxy)-4-pentene, prepared from $3^{13.14}$ ($83 \mathrm{mg}, 0.22$ mmol) according to procedure I, was treated with $330 \mu \mathrm{~L}$ (1 M solution in THF, 0.33 mmol) of tetrabutylammonium fluoride at $0^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was extracted with EtOAc several times. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and 1hen brine, dried (MgSO_{4}), and concentrated in vacuo to give the crude product, which upon purification by column chromatography on silica gel (elution with ether) gave 7 ($38 \mathrm{mg}, 76 \%$): oil; $1 R$ (neat) $3296,2872,1758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.85(\mathrm{ddd}, 1 \mathrm{H} . J=17,10$, 7 Hz), 5.48 (ddd, $1 \mathrm{H}, J=17,2,2 \mathrm{~Hz}$), 5.46 (br s, 1 H), 5.33 (ddd, 1 $\mathrm{H}, J=10,2,2 \mathrm{~Hz}$), 5.08 (dddd, $1 \mathrm{H}, J=8,7,2,2 \mathrm{~Hz}$), $4.51(\mathrm{~s}, 2 \mathrm{H})$, 4.02 (ddd, $1 \mathrm{H}, J=8,8,5 \mathrm{~Hz}$), $3.42(\mathrm{~m}, 2 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}: \mathrm{C}, 66.94 ; \mathrm{H}, 6.48 ; \mathrm{N}, 6.00$. Found: C, $66.26 ; \mathrm{H}, 6.51$; N , 6.01 .
($4 R^{*}, 5 R^{*}$)-4-(Benzyloxymethyl)-5-vinyl-2-oxazolidinone (8). ($2 R^{*}, 3 S^{*}$)- N-(tert-Butyldimethylsilyloxycarbonyl)-2-amino-1-(benzyl-oxy)-3-(methylsulfonyloxy)-4-pentene, prepared from $4^{13.14}$ ($99 \mathrm{mg}, 0.26$ mmol) according to procedure 1 , was treated with $520 \mu \mathrm{~L}$ (1 M solution
in THF, 0.52 mmol) of tetrabutylammonium fluoride in THF (1 mL) at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was extracted with EtOAc several times. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and then brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give the crude product, which upon purification by column chromatography on silica gel (elution with ether) gave 8 ($32 \mathrm{mg}, 53 \%$ in two steps): oil; IR (neat) $3288,2872,1758 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 7.36(\mathrm{~s}, 5 \mathrm{H})$, 6.10 (br s, 1 H), 5.91 (ddd, $1 \mathrm{H}, J=17,11,7 \mathrm{~Hz}$), 5.36 (ddd, $1 \mathrm{H}, J$ $=17,2,2 \mathrm{~Hz}$), 5.28 (ddd, $1 \mathrm{H}, J=11,2,2 \mathrm{~Hz}$), 4.68 (dddd, $1 \mathrm{H}, J=$ $7,7,2,2 \mathrm{~Hz}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.68$ (dddd, $1 \mathrm{H}, J=7,7,7,2 \mathrm{~Hz}$), 3.49 $(\mathrm{m}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}: \mathrm{C}, 66.94 ; \mathrm{H}, 6.48 ; \mathrm{N}, 6.00$. Found: C, 66.94; H, 6.41; N, 5.87.

General Procedure for AgF-Assisted Cyclic Carbamate Formation (Method A). 4-(Methoxycarbonyl)-6-vinyltetrahydro-1,3-oxazin-2-one (19a and 19b). $\quad N$-(tert-Butyldimethylsilyloxycarbonyl)-2-a mino-6-chloro-4-hexenoic acid methyl ester (13b) was prepared from 13a (150 $\mathrm{mg}, 0.54 \mathrm{mmol}$) according to procedure 1. To a suspension of AgF (82 $\mathrm{mg}, 0.65 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at room temperature was added a solution of 13 b in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 18 h and filtered. The filtrate was concentrated in vacuo to give the crude product, which upon purification by column chromatography on silica gel (elution with $10 \% \mathrm{MeOH}$ in CHCl_{3}) gave a mixture of $19 \mathrm{a}(1,3-\mathrm{syn})$ and $19 \mathrm{~b}(1,3-\mathrm{anti})(63 \mathrm{mg}, 63 \% ; 19 \mathrm{a} / 19 \mathrm{~b}=$ 3/2): oil; 1 R (neat) $3296,2960,1740,1716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 6.2-6.7(\mathrm{~m}, 1 \mathrm{H}), 5.6-6.0(\mathrm{~m}, 1 \mathrm{H}), 5.2-5.5(\mathrm{~m}, 2 \mathrm{H}), 4.6-4.9$ (m, 1 H), 4.0-4.3(m, 1 H$), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.6-2.6(\mathrm{~m}, 2 \mathrm{H})$; MS (EI method), $m / z 185(M)^{+}, 126$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{~N}: \mathrm{C}, 51.89$; H, 5.99; N, 7.56. Found: C, 51.89; H, 6.04; N, 7.59. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis $[\delta 6.58$ (br s) $/ 6.26(\mathrm{br} \mathrm{s})=$ $3 / 2]$, since this mixture could not be separated by SiO_{2} column chromatography. The stereochemistries of these compounds were elucidated by their $500-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data: signals of $\mathrm{C}-5$ methylene protons of the major isomer appeared at $\delta 2.43\left(5 \beta \mathrm{H}, J_{4-5 \beta}=5 \mathrm{~Hz}, J_{5 \beta-6}=3 \mathrm{~Hz}\right)$ and $1.86\left(5 \alpha \mathrm{H}, J_{4-5 \alpha}=J_{5 \alpha-6}=11 \mathrm{~Hz}\right)$ indicating this to be syn-19a, while signals of the minor isomer appeared at $\delta 2.18(\mathrm{~m}, 2 \mathrm{H}$) (see Table 11).

General Procedure for AgF/Pd(II)-Assisted Cyclic Carbamate Formation (Method B). 4-(Methoxycarbonyl)-6-vinyltetrahydro-1,3-oxa-zin-2-one (19a and 19b). To a suspension of AgF ($130 \mathrm{mg}, 1.02 \mathrm{mmol}$), PPh_{3} ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$), and allylpalladium(II) chloride dimer (10 mg , $0.03 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at room temperature was added a solution of 13 b ($181 \mathrm{mg}, 0.51 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$, prepared from 13a according to procedure 1 . The reaction mixture was stirred at room temperature for 15 h and filtered. The filtrate was concentrated in vacuo to give the crude product, which upon purification by column chromatography on silica gel (elution with $10 \% \mathrm{MeOH}$ in chloroform) gave a mixture of 19a and 19 b ($68 \mathrm{mg}, 72 \% ; \mathbf{1 9 a} / \mathbf{1 9 b}=1 / 1$).

4-(Benzyloxycarbonyl)-6-vinyltetrahydro-1,3-oxazin-2-one (20a and 20b). Treatment of $\mathbf{1 4 b}$ ($105 \mathrm{mg}, 0.26 \mathrm{mmol}$) with AgF ($51 \mathrm{mg}, 0.39$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ according to method A gave a mixture of 20a (1,3-syn) and 20b (1,3-anti) ($36 \mathrm{mg}, 53 \% ; 20 \mathrm{a} / \mathbf{2 0 b}=4 / 3$): oil; IR (neat) $3280,1760,1716 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 7.36(\mathrm{~s}$, $5 \mathrm{H}), 5.6-7.1(\mathrm{~m}, 2 \mathrm{H}), 5.2-5.5(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.8(\mathrm{~m}, 1 \mathrm{H})$, $4.20(\mathrm{~m}, 1 \mathrm{H}), 1.6-2.6(\mathrm{~m}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~N}: \mathrm{C}, 64.36$; H, 5.79; N, 5.36. Found: C, 64.36; H, 5.80; N, 5.33. The ratio of this mixture was determined by ${ }^{1}$ H NMR analysis: 20a [$\delta 5.47$ (ddd)]/20b $[5.43$ (ddd)] $=4 / 3$.

These compounds were also prepared by using method B : Treatment of $\mathbf{1 4 b}$ ($145 \mathrm{mg}, 0.34 \mathrm{mmol}$) with AgF ($85 \mathrm{mg}, 0.67 \mathrm{mmol}$), PPh_{3} (21 $\mathrm{mg}, 0.08 \mathrm{mmol}$), and allylpalladium chloride dimer ($7 \mathrm{mg}, 0.02 \mathrm{mmol}$) gave a mixture of 20a and 20b ($47 \mathrm{mg}, 53 \% ; \mathbf{2 0 a} / \mathbf{2 0 b}=1 / 1$).

4-(Benzyloxymethyl)-6-vinyltetrahydro-1,3-oxazin-2-one (21a and 21b). Treatment of $\mathbf{1 5 b}(86 \mathrm{mg}, 0.22 \mathrm{mmol}$) with AgF ($44 \mathrm{mg}, 0.35$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ according to method A gave a mixture of 21a ($1,3-\mathrm{syn}$) and 21b ($1,3-\mathrm{anti}$) $(62 \mathrm{mg}, 63 \% ; 21 \mathrm{a} / 21 \mathrm{~b}=4 / 1$). The diastereomeric ratio was determined by HPLC analysis [Develosil ODS-5, elution with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=1 / 1(2 \mathrm{~mL} / \mathrm{min})$, detected by UV monitor $(240 \mathrm{~nm})$. Retention time: 21a, $42.2 \mathrm{~min} ; \mathbf{2 1 b}, \mathbf{3 8 . 7 \mathrm { min }] \text { . Major isomer }}$ 21a was separated from its diastereomer 21b by recrystallization. 21a: colorless leaflets (hexane); mp 77-78 ${ }^{\circ} \mathrm{C} ; 1 \mathrm{R}$ (neat) $3256,2920,2872$, $1706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{~Hz}\right) \delta 7.36(\mathrm{~s}, 5 \mathrm{H}), 5.90(\mathrm{ddd}, 1 \mathrm{H}$, $J=17,10,6 \mathrm{~Hz}$), 5.62 (br s, 1 H), 5.19 (ddd, $1 \mathrm{H}, J=17,2,2 \mathrm{~Hz}$), 5.16 (ddd, $1 \mathrm{H}, J=10,2,2 \mathrm{~Hz}$), 4.75 (ddddd, $1 \mathrm{H}, J=12,6,3,2,2$ Hz), $4.55(\mathrm{~s}, 2 \mathrm{H}), 3.80$ (dddd, $1 \mathrm{H}, J=12,9,5,4 \mathrm{~Hz}$), 3.57 (dd, 1 H , $J=9,4 \mathrm{~Hz}$) , 3.29 (dd, $1 \mathrm{H}, J=9,9 \mathrm{~Hz}$), 2.01 (dddd, $1 \mathrm{H}, J=14,5$, $3,2 \mathrm{~Hz}$), 1.48 (ddd, $1 \mathrm{H}, J=14,12,12 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}: \mathrm{C}, 68.00 ; \mathrm{H}, 6.93 ; \mathrm{N}, 5.66$. Found: C, 67.83; H, 6.93; N, 5.68.

Pure 1,3-anti isomer 21b was obtained by HPLC (Develosil ODS-5, $50 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$) in semipreparative scale. 21b: oil; 1 R (neat) 3300 ,

2990, 2960, $1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{~Hz}\right) \delta 7.34(\mathrm{~s}, 5 \mathrm{H}), 5.88$ (ddd, $1 \mathrm{H}, J=17,12,5 \mathrm{~Hz}$), 5.50 (br s, 1 H), 5.36 (ddd, $1 \mathrm{H}, J=17$, $2,2 \mathrm{~Hz}$), 5.29 (ddd, $1 \mathrm{H}, J=12,2,2 \mathrm{~Hz}$), 4.89 (ddddd, $1 \mathrm{H}, J=10$, $5,2,2,2 \mathrm{~Hz}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, 1 \mathrm{H}, J=9,5 \mathrm{~Hz})$, 3.36 (dd, $1 \mathrm{H}, J=9,9 \mathrm{~Hz}$), 1.87 (dd, $2 \mathrm{H}, J=6,5 \mathrm{~Hz}$).

Preparation of these compounds was also carried out by using method B: Treatment of $\mathbf{1 5 b}(141 \mathrm{mg}, 0.36 \mathrm{mmol})$ with AgF ($92 \mathrm{mg}, 0.72$ mmol), $\mathrm{PPh}_{3}(21 \mathrm{mg}, 0.08 \mathrm{mmol}$), and allylpalladium chloride dimer (7 $\mathrm{mg}, 0.02 \mathrm{mmol}$) gave a mixture of 21a and 21b ($62 \mathrm{mg}, 70 \% ; 21 \mathrm{a} / 21 \mathrm{~b}$ $=1 / 1$).

4-Isopropyl-6-vinyltetrahydro-1,3-oxazin-2-one (22a and 22b). Treatment of $\mathbf{1 6 b}(120 \mathrm{mg}, 0.37 \mathrm{mmol})$ with AgF ($96 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ according to method A gave a mixture of 22a (1,3syn) and 22b (1,3 -anti) ($40 \mathrm{mg}, 63 \% ; \mathbf{2 2 a} / \mathbf{2 2 b}=4 / 1$). The diastereomeric ratio was determined by HPLC analysis [Develosil ODS-5, elution with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=60 / 40(1 \mathrm{~mL} / \mathrm{min}$), detected by UV monitor (220 nm). Retention time: 22a, $31.0 \mathrm{~min} ; \mathbf{2 2 b}, 25.0 \mathrm{~min}$]. Major isomer 22a was separated from its diastereomer 22b by recrystallization. 22a: colorless prisms (ether); mp $142-143^{\circ} \mathrm{C}$; IR (neat) 3252, 3128. 2972, $1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 500 \mathrm{MHz}\right) \delta 5.90$ (ddd, $1 \mathrm{H}, J=17,10$, 6 Hz), 5.55 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 5.36 (ddd, $1 \mathrm{H}, J=10,2,2 \mathrm{~Hz}$), 4.68 (ddddd, $1 \mathrm{H}, J=12,6,3,2,2 \mathrm{~Hz}$), 3.32 (ddd, $1 \mathrm{H}, J=11,6,5 \mathrm{~Hz}$), 1.96 (dddd, $1 \mathrm{H}, J=13,5,3,2 \mathrm{~Hz}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{ddd}, 1 \mathrm{H}, J=13,12,11$ $\mathrm{Hz}), 0.97(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 63.88 ; \mathrm{H}, 8.28 ; \mathrm{N}, 8.93$. Found: $\mathrm{C}, 63.87 ; \mathrm{H}, 8.30$; $\mathrm{N}, 8.99$.

These compounds were also prepared by using method B : Treatment of $\mathbf{1 6 b}(272 \mathrm{mg}, 0.64 \mathrm{mmol})$ with $\mathrm{AgF}(163 \mathrm{mg}, 1.28 \mathrm{mmol}), \mathrm{PPh}_{3}(67$ $\mathrm{mg}, 0.25 \mathrm{mmol}$), and allylpalladium chloride dimer ($23 \mathrm{mg}, 0.06 \mathrm{mmol}$) gave a mixture of 22a and 22b ($70 \mathrm{mg}, 65 \% ; 22 \mathrm{a} / \mathbf{2 2 b}=3 / 2$).

4-Benzyl-6-vinyltetrahydro-1,3-oxazin-2-one (23a and 23b). Treatment of 17 b ($296 \mathrm{mg}, 0.72 \mathrm{mmol}$) with AgF ($183 \mathrm{mg}, 1.44 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ according to method A gave a mixture of 23a ($1,3-\mathrm{syn}$) and 23b $(1,3-\mathrm{anti})(102 \mathrm{mg}, 65 \% ; 23 \mathrm{a} / 23 \mathrm{~b}=4 / 1)$. The diastereomeric ratio was determined by HPLC analysis [Develosil ODS-5, elution with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=60 / 40(1 \mathrm{~mL} / \mathrm{min})$, detected by UV monitor (220 nm). Retention time: 23a, 24.0 min ; 23b, 22.0 min]. Major isomer 23a was separated from its diastereomer by recrystallization. 23a: colorless needles (ether/hexane); mp 102-105 ${ }^{\circ} \mathrm{C}$; IR (neat) 3264, 2932. 1712, $1600,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.30(\mathrm{~m}, 5 \mathrm{H}), 5.96$ (br s, 1 H), 5.80 (ddd, $1 \mathrm{H}, J=17,10,5 \mathrm{~Hz}), 5.40$ (ddd, $1 \mathrm{H}, J=17$, $1,1 \mathrm{~Hz}), 5.26$ (ddd, $1 \mathrm{H}, J=10,1,1 \mathrm{~Hz}), 4.72$ (ddddd, $1 \mathrm{H}, J=11$, $6,1,1,1 \mathrm{~Hz}$), 3.78 (dddd, $1 \mathrm{H}, J=11,7,7,4 \mathrm{~Hz}$), $2.83(\mathrm{~d}, 2 \mathrm{H}, J=$ $7 \mathrm{~Hz}), 2.06$ (ddddd, $1 \mathrm{H}, J=14,4,4,1,1 \mathrm{~Hz}), 1.60($ ddd, $1 \mathrm{H}, J=14$, $11,11 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 71.87 ; \mathrm{H}, 6.96 ; \mathrm{N}, 6.45$. Found: C, 71.62; H, 6.95; N, 6.46. Minor isomer 23b was separated by HPLC (Develosil ODS-5, elution with $60 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$). 23b: colorless prisms; mp $125-131^{\circ} \mathrm{C}$ (ether/hexane); 1 R (neat) 3256,2932, $1706,1605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.1-7.4(\mathrm{~m}, 5 \mathrm{H}), 5.87$ (ddd, $1 \mathrm{H}, J=18,10,4 \mathrm{~Hz}$), $5.2-5.4(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz})$, $4.92(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, 1 \mathrm{H}, J=14,6 \mathrm{~Hz}), 2.70(\mathrm{dd}$, $1 \mathrm{H}, J=14,8 \mathrm{~Hz}), 1.92(\mathrm{~m}, 2 \mathrm{H})$.

Preparation of these compounds was also carried out by using method B: Treatment of $\mathbf{1 7 b}(387 \mathrm{mg}, 0.94 \mathrm{mmol})$ with AgF ($239 \mathrm{mg}, 1.88$ mmol), PPh_{3} ($99 \mathrm{mg}, 0.38 \mathrm{mmol}$), and allylpalladium chloride dimer (34 $\mathrm{mg}, 0.09 \mathrm{mmol})$ gave a mixture of 23a and 23b (101 $\mathrm{mg}, 50 \%$; 23a/23b $=3 / 2$).

Preparation of (2R)- \boldsymbol{N}-(tert-Butoxycarbonyl)-2-amino-1-(benzyl-oxy)-5-chloro-3-pentene (24a). Ozone was passed through the solution of ($2 R$)- N - t-Boc-2-amino-1-(benzyloxy)-3-butene ($5.0 \mathrm{~g}, 18.1 \mathrm{mmol}$) in $\mathrm{MeOH}(200 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ until the solution became slightly blue. Excess ozone was displaced by passing a stream of O_{2} (solution became colorless), and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}(10 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ with stirring. The reaction mixture was allowed to stand at room temperature for 18 h and concentrated in vacuo to give an oily residue, which upon purification by column chromatography on silica gel (elution with 30% ether in hexane) gave an aldehyde ($3.8 \mathrm{~g}, 75 \%$): oil; IR (neat) $3360,3036,2984,2936$, 2872, 2736, 1740, 1714, $1500 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 9.48$ $(\mathrm{s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 5 \mathrm{H}), 5.49(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~m}$, $1 \mathrm{H}), 3.88(\mathrm{dd}, 1 \mathrm{H}, J=10,4 \mathrm{~Hz}), 3.60(\mathrm{dd}, 1 \mathrm{H}, J=10,5 \mathrm{~Hz}), 1.44$ (s, 9 H).

To a stirred solution of the resulting aldehyde ($500 \mathrm{mg}, 1.8 \mathrm{mmol}$) in dry benzene (10 mL) was added (formylmethylene)triphenylphosphorane $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCHO}, 817 \mathrm{mg}, 2.7 \mathrm{mmol}\right)$ at $40^{\circ} \mathrm{C}$. After being stirred at $40^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was directly subjected to column chromatography on silica gel (elution with 30% ether in hexane) to give α, β-unsaturated aldehyde ($310 \mathrm{mg}, 57 \%$): oil; 1R (neat) 3350, 2984, $2932,1720,1696,1646,1516 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 9.58$ (dd, $1 \mathrm{H}, J=8,2 \mathrm{~Hz}), 7.34(\mathrm{~s}, 5 \mathrm{H}), 6.0-7.3(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~d}, 1 \mathrm{H}$, $J=8 \mathrm{~Hz}), 4.2-4.8(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.

Lithium tri-tert-butoxyaluminohydride $\left[\mathrm{LiAlH}(\mathrm{O}-t-\mathrm{Bu})_{3}, 300 \mathrm{mg}, 1.2\right.$ $\mathrm{mmol}]$ was dissolved in dry THF (10 mL) and then the solution was cooled to $-78^{\circ} \mathrm{C}$. To this solution was added a solution of the resulting α, β-unsaturated aldehyde ($310 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry THF (3 mL). The reaction mixture was warmed slowly to $-30^{\circ} \mathrm{C}$, stirred at the same temperature for 2 h , and quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$. To the reaction mixture was added successively ether (50 mL), $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$, and MgSO_{4} $(20 \mathrm{~g})$. The suspension was stirred at room temperature for 30 min and filtered. The filtrate was concentrated in vacuo to give an oily residue, which upon purification by a column chromatography on silica gel (elution with 75% ether in hexane) gave an allyl alcohol ($208 \mathrm{mg}, 67 \%$): oil; 1R (neat) 3348, 2984, 2936, 2868, 1698, $1500 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 7.33(\mathrm{~s}, 5 \mathrm{H}), 5.77(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~d}, 1 \mathrm{H}, J=8$ $\mathrm{Hz}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 2.00$ ($\mathrm{m}, 1 \mathrm{H}$), $1.48(\mathrm{~s}, 9 \mathrm{H})$.

To a stirred solution of the resulting allyl alcohol ($289 \mathrm{mg}, 0.94 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) were added portionwise triphenylphosphine (492 $\mathrm{mg}, 1.87 \mathrm{mmol}$) and N-chlorosuccinimide ($188 \mathrm{mg}, 1.41 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and concentrated in vacuo to give the crude product, which upon purification by a column chromatography on silica gel (elution with 20% ether in hexane) gave 24a $(260 \mathrm{mg}, 85 \%)$: oil; $1 R$ (neat) $3370,2984,2936,2868,1712,1500 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 7.35(\mathrm{~s}, 5 \mathrm{H}), 5.83(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~d}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~m}$, $2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{NCl}: \mathrm{C}, 62.67 ; \mathrm{H}, 7.42$; N, 4.30. Found: C, 62.56; H, 7.54; N, 4.24 .

4-(Benzyloxymethyl)-5-vinyl-2-oxazolidinone (8 and 7). N-(tert-Bu-tyldimethylsilyloxycarbonyl)-2-amino-1-(benzyloxy)-5-chloro-3-pentene ($\mathbf{2 4 b} ; 155 \mathrm{mg}, 0.37 \mathrm{mmol}$), prepared from $\mathbf{2 4 a}$ according to procedure I and treated with AgF ($70 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ according to method A, gave a mixture of $8(1,3-\mathrm{syn})$ and $7(1,3-\mathrm{anti})(47 \mathrm{mg}, 55 \%$; $8 / 7=3 / 1$). Cyclic carbamates, thus obtained, showed.spectroscopic data completely identical with those of 8 and 7 , prepared from 4 and 3 , respectively. These compounds were also prepared by using method B : Treatment of $\mathbf{2 4 b}$ ($231 \mathrm{mg}, 0.54 \mathrm{mmol}$) with AgF ($138 \mathrm{mg}, 1.10 \mathrm{mmol}$), PPh_{3} ($29 \mathrm{mg}, 0.11 \mathrm{mmol}$), and allylpalladium chloride dimer (10 mg , 0.03 mmol) gave a mixture of 8 and $7(91 \mathrm{mg}, 72 \% ; 8 / 7=8 / 1)$.

Preparation of (4S)- N -(tert-Butoxycarbonyl)-4-amino-6-methyl-2-hepten-1-ol. To a solution of N - t-Boc-L-leucinal ${ }^{22}[(3.0 \mathrm{~g}, 14.0 \mathrm{mmol}$; $\left.[\alpha]^{30}-26.0^{\circ}(c 1.0, \mathrm{MeOH})\right]$ is benzene $(50 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$ was added [(ethoxycarbonyl)methylene]triphenylphosphorane ($\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$; $7.3 \mathrm{~g}, 21 \mathrm{mmol}$). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 30 min and concentrated under reduced pressure to give an oily residue, which upon purification by column chromatography on silica gel (elution with 50% ether in hexane) gave ($4 S$)- N - t-Boc-4-amino-6-methyl-2-heptenoic acid ethyl ester (3.8 g) as an oil. The resulting α, β-unsaturated ester was reduced immediately to avoid racemization. To a solution of thus obtained ester ($3.8 \mathrm{~g}, 13.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $1.64 \mathrm{~mL}(13.3 \mathrm{mmol})$ of boron trifluoride etherate. ${ }^{28}$ The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min . To this solution was added $40.2 \mathrm{~mL}(40.2 \mathrm{mmol})$ of diisobutylaluminum hydride ($i-\mathrm{Bu}_{2} \mathrm{AlH} ; 1 \mathrm{M}$ solution in hexane). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 2 h , quenched by the addition of $6.9 \mathrm{~mL}(121.0 \mathrm{mmol})$ of acetic acid and 5 mL of $\mathrm{H}_{2} \mathrm{O}$, diluted with 100 mL of ether, and dried $\left(\mathrm{MgSO}_{4}\right)$. The resulting suspension was filtered. The filtrate was concentrated in vacuo to give an oily residue, which upon purification by column chromatography on silica gel (elution with 67% ether in hexane) gave the title compound ($2.8 \mathrm{~g}, 84 \%$ from N - t-Boc-leucinal): colorless prisms; mp $82-83^{\circ} \mathrm{C}$ (hexane); $[\alpha]^{30}{ }_{\mathrm{D}}-22.0^{\circ}(c 1.0, \mathrm{MeOH})$; IR (neat) 3336, 2964, 2940, 2875, 1694, $1534 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 5.65(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H})$, $3.36(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.1-1.8(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{~d}, 6 \mathrm{H}, J=7 \mathrm{~Hz})$; MS (El method), $m / z 244(\mathrm{M}+\mathrm{H})^{+}, 188,186,170$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}: \mathrm{C}, 64.17 ; \mathrm{H}, 10.35 ; \mathrm{N}, 5.76$. Found: C, 64.07; H, 10.35; N, 5.73 .
(4S)- \boldsymbol{N}-(tert-Butoxycarbonyl)-4-amino-1-chloro-6-methyl-2-heptene (25a). To a solution of (4S)- N -(tert-butoxycarbonyl)-4-a mino-6-methyl-2-hepten-1-ol ($2.3 \mathrm{~g}, 9.3 \mathrm{mmol}$) and triphenylphosphine (4.9 g , $18.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added N-chlorosuccinimide $(1.9 \mathrm{~g}, 14.0 \mathrm{mmol})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and concentrated under reduced pressure to give an oily residue, which upon purification by column chromatography on silica gel (elution with 30% ether in hexane) gave 25a: oil; $[\alpha]^{28} \mathrm{D}-27.7^{\circ}$ (c $1.0, \mathrm{MeOH}$): 1 R (neat) $3348,2964,2940,2876,1698,1522 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) $\delta 5.65(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H})$, $1.44(\mathrm{~s}, 9 \mathrm{H}) .1 .1-1.8(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~d}, 6 \mathrm{H}, J=7 \mathrm{~Hz})$; MS (El method), $m / z 204\left(\mathrm{M}^{-} t-\mathrm{Bu}\right)^{+}, 170,148$. Anal. Calcd for
(28) Moriwake, T.; Hamano, S.; Miki, D.; Saito, S.; Torii, S. Chem. Lett. 1986, 815.
$\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{NCl}: \mathrm{C}, 59.64 ; \mathrm{H}, 9.24 ; \mathrm{N}, 5.35$. Found: C, $59.68 ; \mathrm{H}, 9.27$; N, 5.53 .

4-Isobutyl-5-vinyl-2-oxazolidinone [$(4 S, 5 S)$-29a and ($4 S, 5 R$)-29b]. N -(tert-Butyldimethylsilyloxycarbonyl)-4-amino-1-chloro-6-methyl-2heptene ($\mathbf{2 5 b} ; 700 \mathrm{mg}, 2.0 \mathrm{mmol}$), prepared from 25 a ($530 \mathrm{mg}, 2.0$ mmol) according to procedure 1 and treated with AgF ($381 \mathrm{mg}, 0.30$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ according to method A , gave a mixture of diastereomers 29a and 29b, which were separated by medium-pressure column chromatography on silica gel (elution with 50% ether in hexane). Less polar 1,2 -syn cyclic carbamates 29a: ($230 \mathrm{mg}, 67 \%$): oil; $[\alpha]^{34} \mathrm{p}$ -76.4° (c 1.0, MeOH); \mathbb{R} (neat) $3280,2964,2936,2876,1760 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 6.67($ br s, 1 H$), 5.88(\mathrm{ddd}, 1 \mathrm{H}, J=$ $17,10,7 \mathrm{~Hz}$), 5.37 (ddd, $1 \mathrm{H}, J=17,2,1 \mathrm{~Hz}$), 5.28 (ddd, $1 \mathrm{H}, J=10$, $2,1 \mathrm{~Hz}), 4.50(\mathrm{dd}, 1 \mathrm{H}, J=7,7 \mathrm{~Hz}), 3.58(\mathrm{dtd}, 1 \mathrm{H}, J=7,6,1 \mathrm{~Hz})$, $1.2-1.9(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) ; \mathrm{MS}$ (El method), $m / z 169(\mathrm{M})^{+}, 141,125$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}$: C, 63.88; H, 8.87; N, 8.28. Found: C, 63.98; H, 9.07; N, 8.16. More polar 1,2-anti isomer 29b: ($47 \mathrm{mg}, 14 \%$); colorless needles; $\mathrm{mp} 55-57^{\circ} \mathrm{C}$ (hexane); $[\alpha]^{34}{ }^{\mathrm{D}}-27.5^{\circ}$ (c $1.0, \mathrm{MeOH}$); IR (neat) 3272, 2964, 1754 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 5.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.87$ (ddd, 1 H , $J=17,10,7 \mathrm{~Hz}$), 5.40 (ddd, $1 \mathrm{H}, J=17,2,1 \mathrm{~Hz}$), 5.36 (ddd, $1 \mathrm{H}, J$ $=10,2,1 \mathrm{~Hz}$), $5.01(\mathrm{dd}, 1 \mathrm{H}, J=7,7 \mathrm{~Hz}), 3.94$ (ddd, $1 \mathrm{H}, J=10,7$, $5 \mathrm{~Hz}), 1.2-1.8(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=7$ Hz). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 63.88 ; \mathrm{H}, 8.87 ; \mathrm{N}, 8.28$. Found: C, 63.97; H, 8.98; N, 8.38.
$\mathrm{AgF} / \mathrm{Pd}(\mathrm{Il})$-assisted cyclic carbamate formation of the silyl carbamate $\mathbf{2 5 b}$ was carried out according to method B: Treatment of $\mathbf{2 5 b}(500 \mathrm{mg}$, 1.34 mmol) with AgF ($340 \mathrm{mg}, 2.68 \mathrm{mmol}$), PPh_{3} ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$), and allylpalladium chloride dimer ($10 \mathrm{mg}, 0.03 \mathrm{mmol}$) gave a mixture of 29a and 29b ($171 \mathrm{mg}, 76 \% ; \mathbf{2 9 a} / \mathbf{2 9 b}=15 / 1$).

Preparation of (4S)- N-(tert-Butoxycarbonyl)-4-amino-5-phenyl-2-penten-1-ol. To a solution of N-t-Boc-L-phenylalanal ${ }^{22}[2.0 \mathrm{~g}, 8.0 \mathrm{mmol}$; $\left.[\alpha]^{33} \mathrm{D}-26.7^{\circ}(c 1.0, \mathrm{MeOH})\right]$ in benzene $(30 \mathrm{~mL})$ at $30^{\circ} \mathrm{C}$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}(4.0 \mathrm{~g}, 12.0 \mathrm{mmol})$. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 30 min and concentrated in vacuo to give an oily residue, which upon purification by column chromatography on silica gel (elution with 50% ether in hexane) gave α, β-unsaturated ester (2.5 g): oil. The resulting α, β-unsaturated ester was reduced immediately, to avoid racemization.

To a solution of (4S)- N - t-Boc-4-amino-5-phenyl-2-pentenoic acid ethyl ester ($4.1 \mathrm{~g}, 12.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added boron trifluoride etherate ($1.70 \mathrm{~mL}, 13.8 \mathrm{mmol}$) and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . To this solution was added 38.4 $\mathrm{mL}(38.4 \mathrm{mmol})$ of $i-\mathrm{Bu}_{2} \mathrm{AlH}$ (1 M solution in hexane). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 2 h , quenched by the successive addition of acetic acid ($7.0 \mathrm{~mL}, 122.8 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, diluted with ether (100 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. The resulting suspension was filtered and the filtrate was concentrated in vacuo to give the crude product, which upon purification by column chromatography on silica gel (elution with 75% ether in hexane) gave the title compound ($2.79 \mathrm{~g}, 78 \%$): colorless needles; $\mathrm{mp} 96-97^{\circ} \mathrm{C}$ (ether/hexane); $[\alpha]^{29} \mathrm{D}$ -4.8° ($c 1.0, \mathrm{MeOH}$); 1 R (neat) $3360,2970,2930,1696,1500 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 7.20(\mathrm{~m}, 5 \mathrm{H}), 5.67(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 2$ H), 4.08 (br s, 2 H), 2.82 (d, $2 \mathrm{H}, J=7 \mathrm{~Hz}$), 1.87 (br s, 1 H), 1.40 (s, 9 H); MS (EI method), $m / z 206,186,130$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}$: C, 69.29 ; H, 8.36 ; N, 5.05 . Found: C, $69.06 ; \mathrm{H}, 8.33$; N, 5.03.
(4S)- \mathbf{N}-(tert-Butoxycarbonyl)-4 amino-1-chloro-5-phenyl-2-pentane (26a). To a solution of (4S)-N-(tert-butoxycarbonyl)-4-amino-5-phenyl-2-penten-1-ol ($1.21 \mathrm{~g}, 4.4 \mathrm{mmol}$) and triphenylphosphine (2.3 g , $8.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added N-chlorosuccinimide 882 mg (6.6 mmol). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and concentrated in vacuo to give an oily residue, which upon purification by column chromatography on silica gel (elution with 30% ether in hexane) gave $26 \mathrm{a}\left(1.20 \mathrm{~g}, 93 \%\right.$): colorless prisms; $\mathrm{mp} 68-69^{\circ} \mathrm{C}$ (hexane); $[\alpha]^{33}{ }_{\mathrm{D}}-6.0^{\circ}$ (c 1.0, MeOH); IR (neat) 3376, 2988, 1684, 1522 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{Mz}\right) \delta 7.25(\mathrm{~m}, 5 \mathrm{H}), 5.70(\mathrm{~m}, 2 \mathrm{H}), 4.24$ (br s, 2 H), 4.01 (m, 2 H), $2.84(\mathrm{~m}, 2 \mathrm{H}), 1.43$ ($\mathrm{s}, 9 \mathrm{H}$); MS (EI method), $m / z 204,178,160,148$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{NCl}: \mathrm{C}, 64.97 ; \mathrm{H}$, 7.50; N, 4.74. Found: C, 64.95; H, 7.50; N, 4.72 .

4-Benzyl-5-vinyl-2-oxazolidinone [(4S,5S)-30a and (4S,5R)-30b]. N-(tert-Butyldimethylsilyloxycarbonyl)-4-amino-1-chloro-5-phenyl-2pentene ($26 \mathrm{~b} ; 1.07 \mathrm{~g}, 2.57 \mathrm{mmol}$), prepared from 26 a ($760 \mathrm{mg}, 2.57$ mmol) according to procedure l and treated with AgF ($653 \mathrm{mg}, 5.14$ mmol), $\mathrm{Ph}_{3} \mathrm{P}$ ($137 \mathrm{mg}, 0.52 \mathrm{mmol}$), and allylpalladium chloride dimer ($47 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ according to method B , gave a mixture of $\mathbf{3 0 a}$ and $\mathbf{3 0 b}$ ($365 \mathrm{mg}, 70 \% ; \mathbf{3 0 a} / \mathbf{3 0 b}=10 / 1$). Recrystallization of this mixture from ether and hexane gave pure 30a: colorless needles; mp $71-72^{\circ} \mathrm{C}$; $[\alpha]^{34} \mathrm{D}-53.1^{\circ}(c 1.0, \mathrm{MeOH}$); IR (neat) 3276, 2944, 1742, $1498 \mathrm{~cm}^{-1}$; ${ }^{\prime} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 7.27(\mathrm{~m}, 5 \mathrm{H})$, 6.62 (br s, 1 H), 5.73 (ddd, $1 \mathrm{H}, J=16,10,7 \mathrm{~Hz}$), 5.20 (dd, $1 \mathrm{H}, J=$
$16,1 \mathrm{~Hz}), 5.16(\mathrm{dd}, 1 \mathrm{H}, J=10,1 \mathrm{~Hz}), 4.64(\mathrm{dd}, 1 \mathrm{H}, J=6,6 \mathrm{~Hz})$, $3.77(\mathrm{dt}, 1 \mathrm{H}, J=7,7 \mathrm{~Hz}), 2.86(\mathrm{~d}, 2 \mathrm{H}, J=7 \mathrm{~Hz})$; MS (EI method), $m / z 203(\mathrm{M})^{+}, 160,128,112$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 70.92$; $\mathrm{H}, 6.45$; $\mathrm{N}, 6.89$. Found: $\mathrm{C}, 70.96 ; \mathrm{H}, 6.32 ; \mathrm{N}, 6.92$.

Preparation of ($\mathbf{4 S}$)- \boldsymbol{N}^{8}-(Benzyloxycarbonyl)- \boldsymbol{N}^{4}-(tert-butoxy-carbonyl)-4,8-dlamino-1-chloro-2-octene (27a). To a solution of N^{e}-Z-$N^{\alpha}-t$-Boc-L-lysinal ${ }^{15}(2.2 \mathrm{~g}, 6.0 \mathrm{mmol})$ in benzene (30 mL) at room temperature was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(3.0 \mathrm{~g}, 9.0 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 16 h and concentrated in vacuo to give an oily residue, which upon purification by column chromatography on silica gel (elution with 50% ether in hexane) gave α, β-unsaturated ester ($2.13 \mathrm{~g}, 84 \%$): oil. To a solution of α, β-unsaturated ester ($536 \mathrm{mg}, 1.28 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added boron trifluoride etherate ($346 \mu \mathrm{~L}, 2.81 \mathrm{mmol}$) and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . To this solution was added 3.83 mL (3.83 mmol) of $t-\mathrm{Bu}_{2} \mathrm{AlH}$ (1 M solution in hexane). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 1 h , quenched with acetic acid ($700 \mu \mathrm{~L}, 122.8 \mathrm{mmol}$), and warmed to room temperature. After an addition of 10% tartaric acid (10 mL), the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic phase was washed with aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give the crude product, which upon purification by column chromatography on silica gel (elution with 75% ether in hexane) gave (4S)- N^{8}-(benzyloxycarbonyl)- N^{4}-(tert-butoxycarbonyl)-4,8-diamino-2-octene-1-ol ($424 \mathrm{mg}, 85 \%$): oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 7.34$ (s, $5 \mathrm{H}), 5.65(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~m}, 2 \mathrm{H}), 1.44$ (s, 9 H).

To a solution of the allyl alcohol ($423 \mathrm{mg}, 1.08 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) at $0^{\circ} \mathrm{C}$ was added N-chlorosuccinimide ($187 \mathrm{mg}, 1.4 \mathrm{mmol}$). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and concentrated in vacuo to give an oily residue, which upon purification by column chromatog. raphy on silica gel (elution with 30% ether in hexane) gave 27 a (443 mg , 100%): oil, ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 7.32(\mathrm{~s}, 5 \mathrm{H}), 5.70(\mathrm{~m}, 2 \mathrm{H})$, 5.08 (s, 2 H$), 4.76$ (br s, 1 H), 4.48 (br d, 1 H), 4.10 (br s, 1 H), 4.04 (m, 2 H), 3.20 (m, 2 H), 1.40 ($\mathrm{s}, 9 \mathrm{H}$).

4-[[(N-Benzyloxycarbonyl) amino]butyl]-5-vinyl-2-oxazolidinone [$(4 S, 5 S)$-31a and $(4 S, 5 R)-31 b]$. Treatment of N-tert-butyldimethylsilyloxycarbonyl 27b, prepared from 27a ($774 \mathrm{mg}, 1.89 \mathrm{mmol}$) according to procedure 1 , with $\mathrm{AgF}(479 \mathrm{mg}, 3.77 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(99 \mathrm{mg}, 0.38$ mmol), and allylpalladium chloride dimer ($34 \mathrm{mg}, 0.094 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ according to method B gave a mixture of 31a and 31b ($322 \mathrm{mg}, 54 \%$; 31a $/ \mathbf{3 1 b}=40 / 1$). These products were separated by medium-pressure chromatography (elution with ethyl acetate $/$ benzene $=1 / 1$). 31a: oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 7.35$ ($\mathrm{m}, 5 \mathrm{H}$), 6.35 (br s, 1 H$), 5.86$ (ddd, $1 \mathrm{H}, J=6,10,17 \mathrm{~Hz}$), $5.18-5.45$ (m, 2 H), $5.10(\mathrm{~s}, 2 \mathrm{H}), 4.98$ (br s, 1 H$), 4.52(\mathrm{dd}, 1 \mathrm{H}, J=6,6 \mathrm{~Hz}$), 3.50 (ddd, $1 \mathrm{H}, J=6,6,6 \mathrm{~Hz}$), 3.20 (m, 2 H), $1.30-1.70(6 \mathrm{H}, \mathrm{m}) .31 \mathrm{~b}:$ oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.86$ (ddd, $1 \mathrm{H}, J=7,10,17 \mathrm{~Hz}$), 5.18-5.45 (m, 2 H), 4.98 (br s, 1 H), 4.52 (dd, $1 \mathrm{H}, J=6,6 \mathrm{~Hz}), 3.83$ (ddd, $1 \mathrm{H}, J=7,8,8 \mathrm{~Hz}$), $3.20(\mathrm{~m}, 2 \mathrm{H}$), $1.20-1.70(\mathrm{~m}, 6 \mathrm{H})$.
(3S,4S)-N-(tert-Butoxycarbonyl)-4-amino-1,3-dihydroxy-6-methylheptane (35a). To a solution of 29a ($59.0 \mathrm{mg}, 0.35 \mathrm{mmol}$) in THF (3 mL) at room temperature was added 9-borabicyclo[3.3.1]nonane (9BBN; $2.1 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in hexane, 1.05 mmol). The reaction mixture was stirred for 20 h . To the mixture were added, successively, EtOH ($640 \mu \mathrm{~L}$), $6 \mathrm{~N} \mathrm{NaOH}(215 \mu \mathrm{~L})$, and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(426 \mu \mathrm{~L})$. The mixture was heated at $50^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature, and extracted with EtOAc several times. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give crude 34a, which was subjected to the subsequent reaction without purification. The crude 34 a was dissolved in a mixture of $\mathrm{EtOH}(30 \mathrm{~mL})$ and saturated aqueous barium hydroxide (6 mL). The mixture was refluxed with stirring for 15 h and filtered. Ethanol in the filtrate was removed under reduced pressure. The aqueous solution was diluted with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ and subjected to a column of Dowex- $50 \mathrm{~W} \times 4$ ion-ex-
change resin (elution with $28 \% \mathrm{NH}_{3}$). The eluent was concentrated in vacuo and the residue was dissolved in THF (5 mL). To this solution was added triethylamine ($50 \mu \mathrm{~L}, 0.35 \mathrm{mmol}$) and di-tert-butyl dicarbonate ($\mathrm{Boc}_{2} \mathrm{O} ; 122 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$). The reaction mixture was stirred for 20 h and concentrated in vacuo to give an oily residue, which upon column chromatography on silica gel (elution with 15% EtOAc in ether) gave protected amino diol $35 \mathrm{a}(75 \mathrm{mg}, 82 \%)$: oil; $[\alpha]^{29}{ }_{\mathrm{D}}-40.2^{\circ}(c 1.0$, $\mathrm{MeOH}) ; 1 \mathrm{R}$ (neat) 3396, 2964, 2880, 1688, $1518 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 4.82(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 3.4-3.9(\mathrm{~m}, 5 \mathrm{H}), 3.24$ (br s, 1 H), 1.2-1.8 (m, 3 H), $1.44(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, 6 \mathrm{H}, J=7 \mathrm{~Hz})$; MS (El method), $m / z 262(\mathrm{M}+\mathrm{H})^{+}, 206,186,130$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}$: $\mathrm{C}, 59.74 ; \mathrm{H}, 10.41$; N, 5.36. Found: C, $59.74 ; \mathrm{H}, 10.41$; N, 5.38.
(3S,4S)- \boldsymbol{N}-(tert-Butoxycarbonyl)-4-amino-1,3-dihydroxy-5-phenylpentane ($\mathbf{3 5 b}$). The synthesis of $\mathbf{3 5 b}$ was carried out by the same procedure as above ($\mathbf{2 9 a} \rightarrow \mathbf{3 5 a}$) starting from the cyclic carbamate 30a ($107.5 \mathrm{mg}, 0.53 \mathrm{mmol}$) to give $N-t$-Boc-aminodiol 35 b ($117.6 \mathrm{mg}, 75 \%$): colorless needles; mp $106-108^{\circ} \mathrm{C}$ (ether/hexane); $[\alpha]^{29} \mathrm{D}-38.2^{\circ}$ (c 1.0, $\mathrm{MeOH}) ; 1 \mathrm{R}$ (neat) $3404,2984,2940,1688,1500 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 7.25(\mathrm{~s}, 5 \mathrm{H}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 3.80(\mathrm{~m}$, $5 \mathrm{H}), 2.88(\mathrm{~d}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 1.5-2.1(\mathrm{~m}, 2 \mathrm{H}), 1.40$ (s, 9 H); MS (EI method), $m / z 222,204,164,148$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}$: C, 65.06 ; $\mathrm{H}, 8.53$; $\mathrm{N}, 4.74$. Found: $\mathrm{C}, 65.07$; $\mathrm{H}, 8.51$; N, 4.80 .
($3 S, 4 S$)- \boldsymbol{N}-(tert-Butoxycarbonyl)-4-amino-3-hydroxy-6-methylheptanoic acid ($\boldsymbol{N}-\boldsymbol{t}$-Boc-statine) (36a). To a suspension of PtO_{2} (55 mg , 0.24 mmol), which was reduced primarily with H_{2} (1 atm) for 30 min , in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added a solution of $35 \mathrm{a}(63 \mathrm{mg}, 0.24 \mathrm{mmol})$ in dioxane (2 mL). Oxygen gas was passed through this mixture at $55^{\circ} \mathrm{C}$ for 30 h . Filtration of the reaction mixture followed by addition of NaHCO_{3} powder into the filtrate afforded a fairly basic solution (pH 8), which was washed with EtOAc, and the aqueous layer was adjusted to pH 3 with $10 \% \mathrm{HCl}$. The resulting solution was extracted with EtOAc several times. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to give N - t-Boc-statine ($36 \mathrm{a} ; 40 \mathrm{mg}, 60 \%$): colorless needles; mp 118-120 ${ }^{\circ} \mathrm{C}(t-\mathrm{PrOH}),[\alpha]^{34} \mathrm{D}-38.4^{\circ}(c 1.0, \mathrm{MeOH})$; IR (neat) $3350,2968,1716,1700,1514 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) $\delta 7.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 1$ H), $2.54(\mathrm{~d}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 1.2-1.9(\mathrm{~m}, 5 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}$, $6 \mathrm{H}, J=7 \mathrm{~Hz}$); MS (EI method), $m / z 202,186,130$, which were in accord with those of an authentic sample. ${ }^{8 d}$
($3 S, 4 S$)-N-(tert-Butoxycarbonyl)-4-amino-3-hydroxy-5-phenylpentanoic acid (\boldsymbol{N} - \boldsymbol{t}-Boc-AHPPA) (36b). The synthesis of $\mathbf{3 6 b}$ was carried out by the same procedure as above ($\mathbf{3 5 a} \rightarrow \mathbf{3 6 a}$) starting from 35b ($76.5 \mathrm{mg}, 0.26 \mathrm{mmol}$) to give $N-t$-Boc-AHPPA ($\mathbf{3 6 b} ; 44.4 \mathrm{mg}, 55 \%$): colorless needles (i-PrOH); mp $151-152{ }^{\circ} \mathrm{C}$; $[\alpha]^{30} \mathrm{D}-37.5^{\circ}$ (c 1.0 , MeOH); IR (neat) $3348,2984,2936,1714,1516 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=10 / 1,100 \mathrm{MHz}\right) \delta 7.17(\mathrm{~s}, 5 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.70$ (m, 1 H), $2.79(\mathrm{~d}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{MS}(\mathrm{EI}$ method), $m / z 253(\mathrm{M}+\mathrm{H}-t-\mathrm{Bu})^{+}, 236,218,162$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~N}: \mathrm{C}, 62.12 ; \mathrm{H}, 7.49 ; \mathrm{N}, 4.53$. Found: C, 61.81; 11, 7.43; N , 4.57. The synthetic N - t-Boc-AHPPA (36b) was identical in all respects with those of authentic sample. ${ }^{8 e}$

Acknowledgment. We thank Professor Koji Nakanishi, Director of the Suntory Institute for Bioorganic Research, for his continued encouragement. We thank Dr. Glen Spears, Research Associate of this Institute, for reviewing the manuscript. This work was supported in part by a grant-in-aid from the Ministry of Education, Science and Culture, Japan.

Supplementary Material Available: Detailed experimental procedures and spectral data for compounds 1-4, 13a-18a, and 28a (18 pages). Ordering information is given on any current masthead page.

[^0]: (1) Hunt, S. In Chemistry and Biochemistry of the Amino Acids; Barrett. G. C.. Ed.: Chapman: London, 1985; pp 55-1 38.
 (2) For reviews, see: (a) Wagner. 1.; Musso, H. Angew. Chem., Int. Ed. Engl. 1983. 22, 816. (b) Ohfune, Y.: Kurokawa, N. J. Syn. Org. Chem., Jpn. 1986. 44, 647. (c) Coppola, G. M.: Shuster, H. F. Asymmetric Synthesis. Construction of Chiral Molecule Using Amino Acids; Wiley: New York, 1987.

[^1]: (16) Prepared from N - t-Boc-allylglycine methyl ester ${ }^{14}$ in two steps: (1) ozone, $\mathrm{MeOH},-78{ }^{\circ} \mathrm{C}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$, room temperature; (2) $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Me}$, benzene.
 (17) Successful intramolecular Michael addition from O-carbamates, see: Hirama, M.; Shigemoto, T.; lto, S. J. Org. Chem. 1987, 52, 3342.

[^2]: (18) (a) Trost, B. M. J. Organomet. Chem. 1986, 300, 263. (b) Tsuji, J. J. Organomet. Chem. 1986, 300, 281.

[^3]: (27) Maurer, P. J.; Takahata, H.; Rapoport, H. J. Am. Chem. Soc. 1984, 106. 1095.

